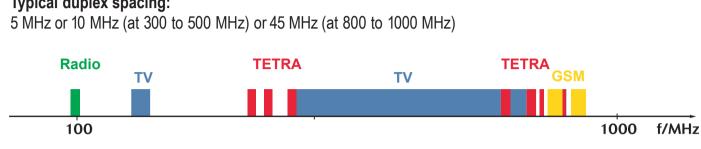


TERRESTRIAL TRUNKED RADIO


FREEDOM Communication Technologies R8100 Communication System Analyzer

FREEDOM Communication Technologies R9000 Communication System Analyzer

450 to 470 MHz Typical duplex spacing:

TETRA in Asia:

350 to 380 MHz

806 to 821 MHz, 851 to 866 MHz

870 to 876 MHz, 915 to 921 MHz

Calculation of RF parameters:

Frequencies & Channels

TETRA in Europe:

380 to 400 MHz

410 to 430 MHz

DL carrier frequency = frequency band · 100 MHz + radio carrier number · 25 kHz + frequency offset

UL carrier frequency = DL carrier frequency – duplex offset

Example: TETRA band from 410 to 430 MHz, first UL channel = 410.0125 MHz,

equivalent DL channel = 420.0125 MHz

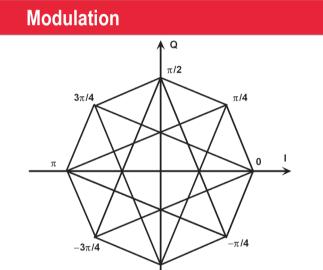
Duplex spacing = 10 MHz Frequency band = 4 (400 MHz)

Radio carrier number = 800

Duplex offset = 12.5 kHz

	Uplink	Downlink		
410	4	20 43	30	f/MHz

Advantages of TETRA Technology


Fast call setup time (group call: < 300 ms) Individual and group calls

Direct mode communication between radios

Data services

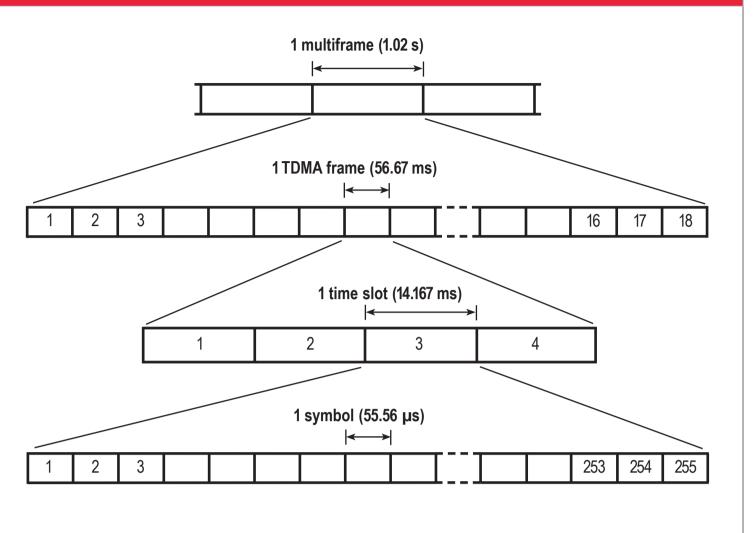
Frequency-economic

Security features Emergency and priority calls High spectral efficiency Infrastructure separate from public mobile networks (avoids congestion) Fallback mode for base stations

TEDS

64-QAM

3π/4 π/2	Format: π/4 DQPSK (differential quadrature phase shift keying, shifted by 45°) The phase change determines the information transferred.				
π 0 1	Phase change	Transferred bits			
A	+ π/4	00			
	+3 π/4	01			
$-3\pi/4$ $-\pi/4$	-3 π/4	11			
-π/2	$-\pi/4$	10			


General Technical Data

Channel bandwidth	25 kHz
Access technology	TDMA
Time slots (channels per carrier)	4
Modulation	π/4 DQPSK (2 bits per symbol)
Symbol rate	18 000 symbols/s (255 symbols/slot)
Maximum data rate	28.8 kbit/s
Call setup time	< 300 ms
Communication	Point to point (duplex, simplex) Point to multipoint
Encryption	Air interface End to end
Voice codec	ACELP (Algorithmic Code Excited Linear Prediction), 4.8 kbit/s

TEDS (TETRA Release 2)	Extended ai	r interface spe	ecification for		
	higher data	rates on traffi	c channels		
Channel bandwidth	25 kHz (8 st	ub-carriers)			
	50 kHz (16 s	sub-carriers)			
	100 kHz (32	sub-carriers)			
	150 kHz (64	sub-carriers)			
Access technology	TDMA/OFD	MA			
Time slots	4				
Modulation	Quadrature Amplitude Modulation (QAM):				
	4-QAM, 16-6	QAM, 64-QAN	M		
Symbol rate on each sub-carrier	2400 symbo	ols/s (34 symb	ols/slot)		
Downlink packet data throughput (kbit/s)	25 kHz	50 kHz	100 kHz	150 kHz	
4-QAM	11	27	58	90	
16-QAM	22	54	116	179	
04.0444		00	175	269	
64-QAM	33	80	175	209	

MUDIEVI	ations				
BER	Bit error rate	MCCH	Main control channel	T4	Test signal for TETRA II testing (QAM in Frames 1–17,
BS	Base station	MER	Message erasure rate		DQPSK in Frame 18)
DMO	Direct mode operation	MNC	Mobile network code	TCH	Traffic channel
DQPSK	Differential quadrature phase shift keying	MS	Mobile station	TDMA	Time division multiple access
ETSI	European Telecommunications Standards Institute	PDO	Packet data optimised (standard not implemented)	TEDS	TETRA Enhanced Data Service, supporting data tran-
GSSI	Group short subscriber identity	PEI	Peripheral equipment interface		smission at rates from 50 to 250 kbit/s
GTSI	Group TETRA subscriber identity	PTT	Push to talk	TIP	TETRA interoperability profile (common TETRA stan-
ISI	Inter-system interface	QoS	Quality of service		dard subset defined by the TETRA Association)
ISSI	Individual short subscriber identity	SCH/F	Signalling channel for mapping onto full bursts	TMO	Trunked mode operation
ITSI	Individual TETRA subscriber identity	SwMI	Switching and management infrastructure	TS	Time slot
MCC	Mobile country code	T1	Test signal commonly used to test the TETRA receiver	V+D	Voice plus data, also known as TMO

Bursts & Frames

Control uplink burst

34 ramp - ing & PA linearis. 4 tail bits 84 scrambled bits	30 extd. training seq.	84 scrambled bits	4 tail bits	15 bits guard period
--	------------------------------	-------------------	----------------	----------------------------

Normal uplink burst

34 ramp - ing & PA linearis.	4 tail bits	216 scrambled bits block 1	22 bits training seq.	216 scrambled bits block 2	4 tail bits	14 bits guard period

Normal continuous downlink burst

12	2	216 scrambled bits	14 bits	22 bits	16 bits	216 scrambled bits or PA linearisation	2	10
train. seq.	phase adj.	block 1	broadc. block	training sequence	broadc. block	block 2	phase adj.	train. seq.

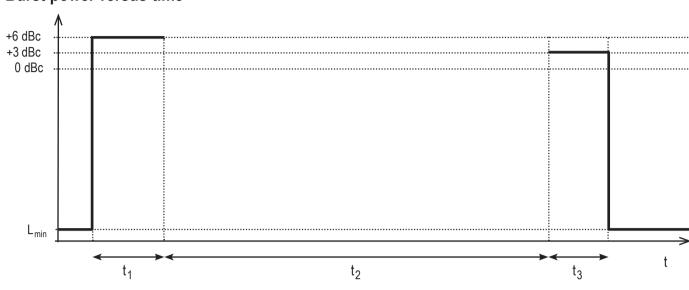
Synchronisation continuous downlink burst

			- Cynoni omodion					
12 train. seq.	2 phase adj.	80 frequency correction	120 scrambled synchronisation bits block 1	38 synchron. training seq.	30 scr. bits (broadcast block)	216 scrambled bits or PA linearisation block 2	2 phase adj.	10 train. seq.

Power Levels, Power Control

Power class	Max. pov	wer level		Power class	Max. pov	wer level	
1	30.0 W	45.0 dBm	V+D only	3L	1.8 W	32.5 dBm	
1L	17.5 W	42.5 dBm		4	1.0 W	30.0 dBm	
2	10.0 W	40.0 dBm		4L	0.56 W	27.5 dBm	
2L	5.6 W	37.5 dBm		5	0.3 W	25.0 dBm	DMO
3	3.0 W	35 0 dBm					

Power step	Power class 1 (30 W)	Power class 2 (10 W)	Power class 3 (3 W)	Power class 4 (1 W)
1 (45 dBm)	45 dBm ±2 dB	40 dBm ±2 dB	35 dBm ±2 dB	30 dBm ±2 dB
2 (40 dBm)	40 dBm ±2.5 dB	40 dBm ±2 dB	35 dBm ±2 dB	30 dBm ±2 dB
3 (35 dBm)	35 dBm ±2.5 dB	35 dBm ±2.5 dB	35 dBm ±2 dB	30 dBm ±2 dB
4 (30 dBm)	30 dBm ±2.5 dB	30 dBm ±2.5 dB	30 dBm ±2.5 dB	30 dBm ±2 dB
5 (25 dBm)	25 dBm ±2.5 dB	25 dBm ±2.5 dB	25 dBm ±2.5 dB	25 dBm ±2.5 dB
6 (20 dBm)	20 dBm ±2.5 dB	20 dBm ±2.5 dB	20 dBm ±2.5 dB	20 dBm ±2.5 dB
7 (15 dBm)	15 dBm ±2.5 dB	15 dBm ±2.5 dB	15 dBm ±2.5 dB	15 dBm ±2.5 dB


Power step	Power class 1L (17.5 W)	Power class 2L (5.6 W)	Power class 3L (1.8 W)	Power class 4L (0.56 W)
1 (45 dBm)	42.5 dBm ±2 dB	37.5 dBm ±2 dB	32.5 dBm ±2 dB	27.5 dBm ±2 dB
2 (40 dBm)	40 dBm ±2.5 dB	37.5 dBm ±2 dB	32.5 dBm ±2 dB	27.5 dBm ±2 dB
3 (35 dBm)	35 dBm ±2.5 dB	35 dBm ±2.5 dB	32.5 dBm ±2 dB	27.5 dBm ±2 dB
4 (30 dBm)	30 dBm ±2.5 dB	30 dBm ±2.5 dB	30 dBm ±2.5 dB	27.5 dBm ±2 dB
5 (25 dBm)	25 dBm ±2.5 dB	25 dBm ±2.5 dB	25 dBm ±2.5 dB	25 dBm ±2.5 dB
6 (20 dBm)	20 dBm ±2.5 dB	20 dBm ±2.5 dB	20 dBm ±2.5 dB	20 dBm ±2.5 dB
7 (15 dBm)	15 dBm ±2.5 dB	15 dBm ±2.5 dB	15 dBm ±2.5 dB	15 dBm ±2.5 dB

Measurements & Limits

RF power

Maximum power, power control steps; see table in previous column

Burst power versus time

 $L_{min} = max (-70 dBc, -36 dBm)$

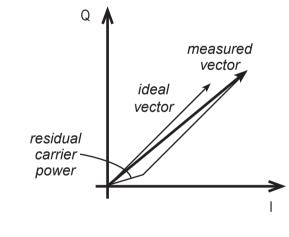
Burst type	t ₁	t ₂	t ₃
Control uplink burst	16 symbols	103 symbols	15 symbols
Normal uplink burst	16 symbols	231 symbols	15 symbols
Discontinuous downlink burst	7 symbols	246 symbols	7 symbols
Continuous downlink burst	Unspecified	Unspecified	Unspecified

Frame alignment

Burst timing error (deviation from the timing given by the base station)

 $Limit = \pm \frac{1}{4} symbol$

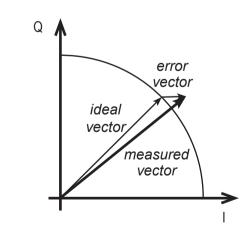
Frequency error limits for TETRA mobile stations


EN 300 392-2 (V+D) ed. 2: $Limit = \pm 100 Hz$

EN 300 396-2 (DMO): Limit = ± 1 kHz (master), ± 100 Hz (slave)

Residual carrier power

DC offset in the I-Q modulator


Limit = 5%

Vector error

Deviation of the measured vector from the ideal vector, relative to the magnitude of the ideal vector. Peak vector error (within a burst) – limit: 30%

RMS vector error (averaged over a burst) – limit: 10%

Receiver measurements

Based on bit error rate (BER) measurements at a defined input power level

T1 signal:	The test equipment transmits a pseudo-random bit sequence, the MS
	synchronises onto the signal and counts bit errors (measurement in the
	MS)

TT loopback: Receiver test mode initiated through a designated test protocol. The MS loops back the received bit sequence to the tester, the tester counts bit

errors (measurement in the test equipment) Receiver test mode in which the MS loops back the received bit sequence to the tester without any protocol (no call being set up). The

tester counts bit errors (measurement in the test equipment) 0.01% at -112 dBm (receiver sensitivity, static conditions) Limit:

